Synthesis, Characterization and Photocytotoxicity of a Glycoconjugated meso-Monoarylbenzochlorin

Philippe Maillard* Clotilde Hery, and Michel Momenteau

Institut Curie, Section de Recherche, CNRS, Bât 112, Centre Universitaire, 91405 Orsay, France,

Abstract

Amphiphilic glycoconjugated benzochlorin was prepared efficiently from meso monoaryl porphyrin and 3-(dimethylamino)acrolein by regiospecific Vilsmeier's reaction followed by cyclisation under acidic conditions and glycosylation. This compound displays a good in vitro photocytotoxicity on tumor cell lines after irradiation with light > 590 nm. © 1997 Elsevier Science Ltd.

In the active field of photodynamic therapy, the design of new photosensitizers having well-defined structure with amphiphilic properties, high selectivity for tumor cells, quick elimination from healthy cells and strong absorption in the red region of visible spectrum is an important challenge for chemists ${ }^{1}$. Syntheses of many tetrapyrrolic compounds such as purpurins ${ }^{2}$, chlorins ${ }^{3}$, phthalocyanins ${ }^{4}$ and benzochlorins ${ }^{5}$ have been developed. Smith et al. ${ }^{6}$, Gunter et al. ${ }^{7}$ and more recently Dolphin et al. ${ }^{8}$ reported the syntheses of a series of 5,15-diaryl substituted benzochlorins by electrophilic Vilsmeier formylation ${ }^{9}$ of symmetrical nickel 5,15diphenylporphyrins, followed by cyclisation under acidic conditions to the single possible benzochlorin. Furthermore, Kohli et al. ${ }^{10}$ have described the preparation of functionalized benzochlorins from mesounsubstituted porphyrins. However the possibility to prepare meso-monosubstituted benzochlorins from meso-monosubstituted porphyrins following the same strategy has so far never been explored.

In this paper, we wish to report the efficient regioselective preparation of an amphiphilic glycoconjugated meso-monoaryl-benzochlorins. Nickel (II) porphyrin 1 (scheme) was obtained by cyclocondensation of $2,3,7,8,12,13,17,18$-octaethyl-1'-8'-dideoxy-a-c-biladiene hydrobromide ${ }^{11}$ on paramethoxy benzaldehyde according to the method of Harris et al. ${ }^{12}$ and then metallation with nickel acetate in methanol. Electrophilic substitution with 3-(dimethylamino)acrolein under Vilsmeier's conditions, led to the two isomeric nickel(II) complexes 2 and 3 (total yield 85%, ratio $2 / 3,85.5 / 14.5)^{13}$, in which the $2^{\prime \prime}$ formylvinyl group is linked either at the adjacent meso-carbon $\left(\mathrm{C}_{10}\right)$ or at the opposite $\left(\mathrm{C}_{15}\right)$ to the meso-aryl position. The structure of each meso-($2^{\prime \prime}$-formylvinyl)porphyrin was determined by ${ }^{1} \mathrm{H}$ NMR studies ${ }^{14}$. Treatment of porphyrin 2 , by trifluoroacetic acid under argon atmosphere at room temperature, afforded nickel(II) benzochlorin 4 in 58% yield. HPLC analysis and ${ }^{1} \mathrm{H}$ NMR studies showed the presence of a single compound 4 corresponding exclusively to one of the two possible nickel monoarylbenzochlorins ${ }^{15}$. Dealkylation of the methoxy group by boron tribromide ${ }^{16}$ in dry methylene chloride afforded complex 5 in 73 $\%$ yield ${ }^{17}$. Demetallation in concentrated sulfuric acid of 5 gave the metal-free benzochlorin 6^{18} in 70% yield. Glycosylation of 6 was performed, in dimethylformamide in the presence of potassium carbonate, by 1-bromoethoxy-per-acetyl-maltose 9 available from condensation of per-acetylated maltose with l-bromo ethanol using boron trifluoride diethyl etherate in dry methylene chloride ${ }^{19}$. This afforded glycosylated benzochlorin 7^{20} in 95% yield. Glycoconjugated derivative $\mathbf{8}^{21}$ was obtained from 7 by deacetylation of maltose moieties by the method of Zemplén et al. ${ }^{22}$ in quantitative yield.

(ii)

Reagents: (i) 3-(dimethylamino)acrolein $/ \mathrm{POCl}_{3}$, (ii) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{Ar}$, (iii) $\mathrm{BBr}_{3} / \mathrm{dry}^{\mathrm{CH}} \mathbf{2}_{2} \mathrm{Cl}_{2}$,
(iv) $\mathrm{H}_{2} \mathrm{SO}_{4}$, (v) 9 and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{DMF} / 60^{\circ}$, (vi) $\mathrm{MeONa} / \mathrm{MeOH}$.

Scheme : Synthesis of glycoconjugated benzochlorin
The UV characteristics of $\mathbf{6 - 8}$ have absorptions similar to those of Gunter?. Our monophenyl compound has not lost the shift and the increased absorbance in the red region which were seen with compounds bearing two phenyl groups.

1D and homonuclear 2D ${ }^{1} \mathrm{H}$ NMR studies enabled us to confirm the structures. NOESY cross correlation peak were seen between ethyl groups carried by carbon 7 and the two ortho protons of the mesophenyl group (figure). Moreover ${ }^{1} \mathrm{H}$ NMR 2D spectra of benzochlorin 7 showed NOE interactions between the ten protons (1.96 ppm CH 2 ethyl and -0.02 ppm CH 3) of the C_{7} ethyl and H_{2} and H_{6} ortho protons of the meso-phenyl group (7.79 ppm). Such a behaviour corresponds to a cyclisation of the C_{5} meso carbon atom on the nearest pyrrole.

To evaluate the influence of a sugar substitution on the photobiological activity of benzochlorin 8 , its photocytotoxicity was determined and compared with that obtained with sugar-free benzochlorin 6 (Table). 6 did not show any cytotoxicity and photocytotoxicity while 8 , irradiated either with white light ($\mathrm{IC}_{50}=8 \mu \mathrm{M}$) or above 590 nm light ($\mathrm{IC}_{50}=5.7 \mu \mathrm{M}$) showed significant photocytotoxicity. Although the fluence was lower in the last case and may affect the results, it is interesting to note that a red light irradiation appears to be more efficient than a full spectrum one.

Table

Survival Fraction of HT 29 Tumor Cells .

Compound	Dose $\mu \mathrm{g} / \mathrm{ML}$	Survival fraction \% of controls without light (a)	Survival fraction \% of controls, white light (a) b	Survival fraction \% of controls, light $(\lambda>590 \mathrm{~nm})(\mathrm{a}) \mathrm{c}$
6	10	$94(2.3)$	$110(6.3)$	$83(6.8)$
	5	$88(7)$	$116(2.3)$	$85(3.0)$
	2	$92(1.0)$	$113(13.5)$	$88(7.5)$
	1	$86(3.7)$	$115(10.2)$	$85(1.9)$
	10	$96(5.9)$	$37(19.2)$	$15(1.5)$
	5	$86(3.3)$	$75(14.1)$	$55(9.4)$
	2	$104(0.6)$	$109(1.2)$	$85(10.4)$
	1	$101(7.2)$	$115(2)$	$95(3.2)$

(a) Standard deviation, ${ }^{\mathrm{b}}$ Total dose $2.3 \mathrm{~J} / \mathrm{cm}^{2}$, fluence $3.8 \mathrm{~mW} / \mathrm{cm}^{2},{ }^{\mathrm{c}} 520 \mathrm{~nm} 0 \% \mathrm{~T}, 590 \mathrm{~nm} 80 \% \mathrm{~T}$, dose $2.5 \mathrm{~J} / \mathrm{cm}^{2}$, fluence 2 $\mathrm{mW} / \mathrm{cm}^{2}$. HT29 cells were grown in DMEM supplemented with 10% FCS. Surviving fraction was estimated using the MTT assay

In summary, an amphiphilic glycoconjugated benzochlorin with spectroscopic properties suitable for use in photodynamic therapy can be prepared in good yield from a-c biladiene. This compound displays a good photocytotoxicity in vitro on HT 29 tumor cells after irradiation with red light $>590 \mathrm{~nm}$.

Acknowledgements. We are grateful for financial support from "Association pour la Recherche sur le Cancer". We wish to thank Alain Croisy for HPLC analysis and photobiological tests and Christiane Huel for NMR spectroscopic studies.

References and Notes

1 Brown, S. B.; Truscott, T. G. Chem. in Br. 1993, 29, 955. Kreimer-Birnbaum, M. Seminars in Hematology 1989, 26, 157 173. Valles, M. A. Afinidad 1993, 448, 469-479.

2 Gunter, M. J.; Robinson, B. C. Aust. J. Chem. 1990, 43, 1839-1860. Gunter, M. J.; Robinson, B. C. Tetrahedron Lett. 1990, 31, 285-288.
3 Shiau, F. Y.; Pandey, R. K.; Dougherty, T. J.; Smith K. M. in "Optical methods for tumor treatment and early diagnosis: mechanisms and techniques." 1991, 330. Smith, K. M.; Pandey, R. K. Shiau, F. Y., Smith, N. W., Iakovides, P.; Dougherty, T. J. in "Optical methods for tumor treatement and detection." 1992, 274. Spikes, J. D. J. Photochem. Photobiol. 1990, 6, 259-274.
4 Jori, G. Photochem. Photobiol. 1990, 52, 439-443. Rosenthal, I. Photochem. Photobiol. 1991, 53, 859-870.
5 Morgan, A. R.; Garbo, G. M. Trends in Photochentistry and Photobiology 1991, 2, 229-236. Morgan, A. R. in "Photodynanic Therapy: Basic principles and clinical applications." Henderson, B. W.; Dougherty T. J. Ed., 1992, 157.

Kessel, D.; Morgan A. Photochem. Photobiol. 1993, 58, 521-526. Boyle, R. W. J. Chem. Soc., Chem. Commun. 1994, 24632464. Kusch, D.; Töllner, E.; Lincke, A.; Montforts, F. P. Angew. Chem. Int. Ed. Engl., 1995, 34, 784.-787
$8{ }^{1} \mathrm{H}$ NMR (pyridine $\left.\mathrm{d}_{5}\right) \delta: 9.50\left(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{C}}\right.$ benzo), $9.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso), $8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso), $8.12(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$ benzo), $7.96\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, ortho phenyl), $7.89\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ha}_{\mathrm{a}}\right.$ benzo), $7.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH} \mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right), 7.48$ $\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{OH} \mathrm{C}_{2}\right.$), $7.24\left(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, meta phenyl), $7.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH} \mathrm{C}_{3}\right.$ ' and C_{4}) , $6.38\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{OH}_{6}\right), 6.32(\mathrm{t}, 1 \mathrm{H}, \mathrm{OH}$ C_{6}), 5.95 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}{ }^{\prime}$ Malt), $4.95\left(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right.$ Malt), 4.61 (dd, $J=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}$ Malt), 4.54 (t, $1 \mathrm{H}, \mathrm{H}_{5}$ Malt), 4.51 (dd, $J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6} \mathrm{Malt}$), $4.47\left(\mathrm{t}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \alpha\right), 4.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right.$ and $\left.\mathrm{H}_{4} \mathrm{Malt}\right), 4.39\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \beta\right)$, 4.36 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{6}{ }^{\prime}$ Malt), 4.21 (t, $1 \mathrm{H}, \mathrm{H}_{4}{ }^{\prime}$ Malt), 4.19 (dd, $1 \mathrm{H}, \mathrm{H}_{2}{ }^{\prime}$ Malt), 4.09 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{2}$ Malt), 3.87 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{5}{ }^{\prime}$ Malt), 3.67 $\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{12}\right), 3.63\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{12}\right), 3.49\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.45(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.38\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{3}\right), 2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{7}\right), 1.72\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{12}\right), 1.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH} 3), 1.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} 3), 1.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} 3), 1.57\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}_{3}\right), 1.20$ and $0.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.15\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C} 7\right)$, UV-vis. spectrum in $\mathrm{MeOH}: \lambda_{\max }$, nm (ε, L mmol m^{-} ${ }^{1} \mathrm{~cm}^{-1}$): 415 (68.9), 546 (shoulder), 582 (10.2), 618 (11.3), 672 (24.3).
Vincente, M. G. H.; Rezzano, I. N.; Smith, K. M. Tetrahedron Lett. 1990, 31, 1365-1368. Vincente, M. G.; Smith, K. M. J. Org. Chem. 1991, 56, 4407-4418.
Gunter, M. J.; Robinson, B. C.; Gulbis J. M.; Tiekink, E. R. T. Tetrahedron 1991, 47, 7853-7868.
Boyle, R. W.; Dolphin, D. J. Chem. Soc., Chem. Commun. 1994, 2463-2464.
Gosmann, M.; Franck, B. Angew. Chem. Int. Ed. Engl. 1986, 25, 1100-1101.
Kohli, D. H.; Morgan, A. R. Bioorg. Med. Chem. Lett. 1995, 5, 2175-2178.
Johnson, A. W.; Kay. J. Chem Soc. 1965, 1620-1628.
Harris, D.; Johnson, A. W.; Gaete-Holmes, R. Bioorganic Chem. 1980, 9, 63-70.
Ratio determined by HPLC analysis using a Gilson apparatus with a dynamic mixer module Gilson 811 , a manometric module Gilson 802, a pump Gilson 303 and a holochrom module Gilson (detection at 450 nm). Column: Hibar Lichrosorb SI $60,7-\mu \mathrm{m}$ Merck eluted by a mixture heptane / methylene chloride ($1.5 \mathrm{ml} / \mathrm{mn}$). HPLC gradient (time mn: \% heptane): $t=0$: $80 \%, \mathrm{t}=15: 50 \%, \mathrm{t}=49: 80 \%$.
$2{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 9.71(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 9.24\left(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right.$ vinyl), $9.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso), 9.08 (s, $1 \mathrm{H}, \mathrm{H}$ meso), $7.76(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.09(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $5.63(\mathrm{dd}, J=8$ and $15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \beta$ vinyl), 3.64 (m, $\left.12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} 3)$. UV-vis. spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, \mathrm{L}_{\mathrm{mmol}}{ }^{-1} \mathrm{~cm}^{-1}\right): 454(101.9), 548(7,6), 618.5(11.6) .3^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 9.77(\mathrm{~d}, J$ $=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 9.29\left(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right.$ vinyl), $9.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}$ meso), $7.75(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl $), 7.07(\mathrm{~d}, J=8 \mathrm{~Hz}$, 2 H , phenyl), 5.56 (dd, $J=8$ and $15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \beta$ vinyl), $4.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.67\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65(\mathrm{~m}$, $\left.18 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. UV-vis. spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{L} \mathrm{mmol}{ }^{-1} \mathrm{~cm}^{-1}\right): 420(65.5), 448.5$ (77.1), 548 (6.7), 581 (8), 608 (8.2).
$4^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 8.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}\right.$ meso, and H_{c} benzo) $8.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso), $7.62(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.64(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$ and H_{b} benzo) , $6.96\left(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}\right.$, phenyl), $3.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.40(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH} 2), 2.11\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.88(\mathrm{q}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH} 3), 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.63\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.06(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH} 3)$. UV-vis. spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 429.5$ (70), 523.5 (shoulder), 590 (shoulder), 642 (shoulder), 693.5 (31.1).
Bhatt, M. V.; Kulkarni, S. U. Synthesis 1983, 249-250. Tsuchida, E.; Komatsu, T.; Hasegawa, E.; Nishide, H. J. Chem. Soc. Dalton Trans. 1990, 2713-2718.
5 UV-vis. spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right.$): 429.5 (92.7), 523.5 (shoulder), 647 (shoulder), 693 (43.2).
$6^{1}{ }^{1} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 9.22\left(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right.$ benzo), $8.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso $), 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso), $7.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, H_{b} benzo), $7.74\left(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}\right.$ ortho phenyl), $7.72\left(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ benzo), $6.96(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}$ meta phenyl), $3.69\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.63\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.43\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70$ (broad, $\left.1 \mathrm{H}, \mathrm{OH}\right), 2.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.25(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.18\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} 3), 1.55(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH} 3), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right),-0.02\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. UV-vis. spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{L}_{\mathrm{mmol}}{ }^{-1} \mathrm{~cm}^{-1}\right): 418$ (95.4), 548.5 (7.4), 581.5 (9.6), 618 (1.1), 673 (26.1).

Dahmén, J.; Frejd, T.; Grönberg, G.; Lave, T.; Magnusson, G.; and Noori, G. Carbohydr. Res. 1983, 116, 303-307.
$7{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 9.22\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right.$ benzo) , $8.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso) , $8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ meso), $7.90(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H_{b} benzo), 7.79 (d, $J=8.25 \mathrm{~Hz}, 2 \mathrm{H}$, ortho phenyl), $7.69\left(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ benzo), 7.01 (d, $J=8.25 \mathrm{~Hz}, 2 \mathrm{H}$, meta phenyl), $5.45\left(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right.$, Malt), 5.39 (dd, $\left.J=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}, \mathrm{Malt}\right), 5.34$ (dd, $\left.J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3} \mathrm{Malt}\right), 5.07(\mathrm{t}, J=10 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{4}{ }^{\prime}$ Malt), 4.95 (d, $\left.J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{Malt}\right), 4.88\left(\mathrm{dd}, J_{2}^{\prime}-1^{\prime}=4 \mathrm{~Hz}, J_{2}^{\prime}-3^{\prime}=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}{ }^{\prime}\right.$ Malt), $4.80(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H_{1} Malt), 4.57 (dd, $1 \mathrm{H}, \mathrm{H}_{6}$ Malt), 4.29 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \alpha$), 4.27 (dd, $2 \mathrm{H}, \mathrm{H}_{6}$ and H_{6} Malt), 4.07 (m, $2 \mathrm{H}, \mathrm{H}_{4}$ and H_{6} Malt), 3.99 (dd, $J 5^{\prime}-6^{\prime}=2.5 \mathrm{~Hz}, J_{5}^{\prime}-4^{\prime}=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}^{\prime} \mathrm{Malt}$), $3.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \beta\right.$), 3.78 (dd, $1 \mathrm{H}, \mathrm{H}_{5} \mathrm{Malt}$), $3.69(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{12}\right), 3.62\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{2}\right), 3.45\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{18}\right), 3.42\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{13}\right.$ and $\left.\mathrm{C}_{17}\right), 2.19\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{3}\right), 2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{7}\right), 1.96\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{7}\right), 1.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}_{12}\right), 1.58\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{17}\right.$ and $\left.\mathrm{C}_{18}\right), 1.52\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{13}\right), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}_{3}\right),-0.02\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C} 7\right.$), UV-vis. spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{L} \mathrm{mmol}^{-1} \mathrm{~cm}^{-1}\right): 418(74.5), 548.5$ (shoulder), 581.5 (7.9), 618.5 (9), 673 (22.7).

[^0]
[^0]: Zemplén, G.; Gerecs, A.; Haracsy, I. Ber. 1936, 69, 1827.

